The Structure of P_2I_4

By S. G. FRANKISS^{†*}, F. A. MILLER[†], H. STAMMREICH[‡], and TH. TEIXEIRA SANS[‡]

(†Mellon Institute, Pittsburgh, Pennsylvania; ‡Department of Physics, University of São Paulo, São Paulo, Brazil; *Department of Chemistry, University College, London)

X-RAY-DIFFRACTION data have shown¹ that crystalline P_2I_4 has a trans- I_2PPI_2 structure with C_{2h} symmetry. In contrast, P_2I_4 dissolved in CS_2 has been reported to have a gauche-structure with C_2 symmetry from a determination of its dipole moment² and from its infrared spectrum³ between 300 and 400 cm.⁻¹ From this it has been concluded⁴ that isolated P_2I_4 probably has a gauche-structure but that the effects of crystal packing may give rise to the *trans*-structure in the solid.

We have examined the infrared spectrum from 33 to 550 cm.⁻¹ and the Raman spectrum of P_2I_4 as a solid and as solutions in CS₂, C₆H₆, CH₂Cl₂, CCl₄, and CH₃I. The spectra are fully consistent only with P_2I_4 having the *trans*-structure in both states. This conclusion is based on the absence of coincidences between Raman and infrared bands, the observation of only two infrared-active and three Raman-active fundamentals (two of them

polarized and one depolarized) between 300 and 450 cm.⁻¹, the similarity between the spectra of the solid and the solution, and the generally satisfactory vibrational assignments that can be made using the trans-I, PPI, model.

The fundamental frequencies that are suggested for the solid are: $a_g - 319$, 307, 117, 78; $a_u - 330$, 89, 52; $b_g - 328$, 92, $b_u - 301$, 112, and 62 cm.⁻¹ The probable fundamental frequencies for P_2I_4 in solution are: $a_g = -316$, 303, 114, 78; $a_u = -327$, 90, 51; b_g -330, 95; b_u -313, 109, and 65 cm.⁻¹ Further details of these assignments will be presented separately.5

We conclude that P_2I_4 in the solid and liquid states has a geometry that is similar to the transstructure proposed⁶ for P_2Cl_4 in its various states, but it is different from the gauche-structures that have been reported for P₂H₄,^{7,8} N₂H₄,⁹ and $N_{2}F_{4}$.¹⁰⁻¹²

(Received, April 28th, 1966; Com. 289.)

- ¹ Y. C. Leung and J. Waser, J. Phys. Chem., 1956, **60**, 539. ² M. Baudler and G. Fricke, Z. anorg. Chem., 1963, **320**, 11.
- ⁸ A. H. Cowley and S. T. Cohen, Inorg. Chem., 1965, 4, 1200.
- ⁴ A. H. Cowley, Chem. Rev., 1965, 65, 617.
- ⁵ H. Stammreich, Th. Teixeira Sans, S. G. Frankiss, and F. A. Miller, Spectrochim. Acta, 1966, 22, in the press.
- ⁶S. G. Frankiss and F. A. Miller, Spectrochim. Acta, 1965, 21, 1235.
- ⁷ E. R. Nixon, J. Phys. Chem., 1956, 60, 1054.
- ¹⁰ M. Baudler and L. Schmidt, Z. anorg. Chem., 1957, 289, 219; Naturwiss., 1957, 44, 488.
 ⁹ A. Yamaguchi, I. Ichishima, T. Shimanouchi, and S. Mizushima, Spectrochim. Acta, 1960, 16, 1471.
 ¹⁰ D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys., 1959, 31, 1129.
- ¹¹ J. R. Durig and R. C. Lord, Spectrochim. Acta, 1963, 19, 1877.
- ¹² C. B. Colburn, F. A. Johnson and C. Haney, J. Chem. Phys., 1965, 43, 4526.